Hydro Predict 2012 The Impact of Climate Change on Water Supply

Pao-Shan Yu\*, Tao-Chang Yang, Hung-Wei Tseng, Chieh Chen

#### Pao-Shan Yu

Professor Department of Hydraulic and Ocean Engineering National Cheng Kung University(NCKU), Taiwan

September 2012

## Content



# Introduction



#### **Precipitation Trend Tendency**

A

A: 22(8) raingauge stations in Taiwan with over than 100(1906~) years historical data used for analysis.

B: Statistical method are used:

Cumulative Deviations
Mann-Whitney-Pettitt
Kruskal-Wallis

C: The change point is aroud in1960

# Introduction

## The purpose of this study

- assess the impact of climate change on water supply( drought risk) over Southern Taiwan
- Which drought index is better to judge the risk of water supply
- The difference of drought index between the control(baseline) period (1980~1999) and the future period (2020~2049) under A1B emission scenario is only shown here.

# **Study Area and Dataset**

### **Tseng-Wen Reservoir Catchment**

- completed in 1973 with a storage capacity of about  $780 \times 10^6$  m<sup>3</sup>
- The annual total water supply amount is 1,047 million tons.
- The catchment of Tsengwen Reservoir encloses an area of 481 km<sup>2</sup>
- Observed data from 1975 to 2010 were collected







is used to address the impact of climate change on water supply

## Downscaling Results

directly collect from the project of Taiwan Climate Change Projection and Information Platform



| GCM Acronym     | Country       |
|-----------------|---------------|
| CGCM3.1(T63)    | Canada        |
| CSIRO-Mk3.5     | Australia     |
| ECHAM5/MPI-OM   | Germany       |
| GFDL-CM2.0      | United States |
| GFDL-CM2.1      | United States |
| MRI-CGCM2.3.2   | Japan         |
| MIROC3.2(hires) | Japan         |
|                 |               |

General information of selected GCMs

The GCMs which can reasonably simulate tropical cyclone index and large scale circulation pattern were used in this study.

Source: http://www.ipcc-data.org/index.html

Resolution: 25km×25km Source: NCDR

# **Downscaling Results**

#### 8

## Impact of Climate Change on Hydrology



Results Under A1B- Scenario [S: stand for the time period from 2020 to 2039] Runoff will be increased during the period from July to Sep The runoff of remaining months will be decreased

#### 9

#### Weather Generator

Synthesize daily rainfall and temperature data



#### Daily Rainfall Data is generated

First-order Markov Chain [transition probability] Probability distribution [Weibull distribution]

### Temperature Data

First-order regression model

$$T_{k} = \mu_{t} + \rho_{1t} \left( t_{k-1} - \mu_{t} \right) + \sqrt{1 - \rho_{1t}^{2}} \sigma_{t} v_{k}$$

10

## Hydrological Model

Use to simulate the inflow of Tseng-Wen Reservoir catchment



#### **An HBV-based Model** The model consists of following three parts:

- Soil Moisture Module
- Runoff Response
- Water Balance Functions



## Hydrological Calibration and verification



- Calibration period: 1975~1999年
- Verification period: 2000~2008年
  - Criteria

| Criteria     | Mean<br>Error<br>(mm) | Coefficient<br>of<br>correlation | Root mean<br>square error<br>(mm) |
|--------------|-----------------------|----------------------------------|-----------------------------------|
| Calibartion  | 0.957                 | 0.938                            | 6.849                             |
| Verification | 0.985                 | 0.964                            | 9.539                             |

#### • 參數率定值

| FC      | beta  | LP/FC | PERC  | UZL    | K0    | K1    | K2    | C <sub>e</sub> |
|---------|-------|-------|-------|--------|-------|-------|-------|----------------|
| 245.937 | 1.264 | 0.05  | 5.423 | 32.743 | 0.659 | 0.008 | 0.161 | 0.715          |

12

#### Reservoir System

"Continuity Equation" is used to model the water supply process



13

## Drought Index

Drought (water shortage) Definition: Drought occurs when supply



#### Drought Index

Various indices are proposed to characterize drought events

14

Drought Index

Single Index



Reliability Related to the duration of drought events  $Rel = 1 - \frac{No. of \ days \ D_t > 0}{r}$ Vulnerability Related to the magnitude of drought events  $Vul = \frac{\sum_{t=1}^{t=n} D_t / No. of days D_t > 0}{Total Water Demand}$ **Resilience** Related to the number of drought events

 $Res = \frac{No. of \ days \ D_t = 0 \ follows \ D_t > 0}{No. \ of \ days \ D_t > 0}$ 

#### **Drought Index**

#### Multiple Index

It can can measure various characteristics of drought event at the same time (give more information)



of drought events

of drought events

### Multiple Index

#### Sustainability Index

Positive index [the greater the better] Geometric mean Value varies from 0 to 1

$$SUI = [Rel \times Res \times (1 - Vul)]^{1/3}$$

#### Drought Risk Index

Negative index [the less the better] Arithmetic mean Value varies from 0 to 1

$$DRI = w_1(1 - Rel) + w_2(1 - Res) + w_3(1 - Vul)$$
$$w_1 + w_2 + w_3 = 1$$

## **Results of Drought Index Performance**

#### 17

## Criterion to choose a good index

#### A good drought index should be monotonic

Jain SK (2010) Investigating the behavior of statistical indices for performance assessment of a reservoir. *Journal of Hydrology*, 391, pp90-96.

#### Non-monotonic Behavior



#### Monotonic Behavior



#### **Examination Process**

| Drought Index             | Variable                | Behavior             |
|---------------------------|-------------------------|----------------------|
| Selected indices:         | Independent Variables:  | Examination Results: |
| Rel, Vul, Res, SUI, DRI & | Storage, Inflow, Demand | Monotonic or Non-    |
| MDRI                      | & Evaporation           | monotonic            |

## **Results of Drought Index Performance**



## **Performance of Monotonic**





140

## **Results of Drought Index Performance**



## Performance of Monotonic



# **Modification of Drought Index**

#### 20

#### Multiple Index

#### Sustainability Index

Positive index [the greater the better] Geometric mean Value varies from 0 to 1

#### Drought Risk Index

Negative index [the less the better] Arithmetic mean Value varies from 0 to 1

#### Modified Drought Risk Index

Geometric mean Negative index [the less the better] Value varies from 0 to 1

 $MDRI = [(1 - Rel) \times (1 - Res) \times Vul]^{1/3}$ 

# **Results & Discussion**



#### **Performance of Monotonic**



### Results

MDRI is a multiple index which can provide more information about drought events and is also a monotonic index

This Study uses MDRI for further discussion An efficient and suitable index for drought events

# **Results of Impact of Climate Change**

#### 22

## Link MDRI to Existing Shortage Levels

Take public water supply as an example



#### **Classification of Water Shortage Level**

| Level   | Deficit Rate  | MDRI    |
|---------|---------------|---------|
| Level 3 | 10~20%        | 0.4~0.5 |
| Level 2 | 20~30%        | 0.5~0.8 |
| Level 1 | More than 30% | 0.8~1.0 |

# **Results of Impact of Climate Change**

23

Use MDRI to Assess Drought(water shortage) Index in 2020~2049



Under A1B-S scenario
The number of level 2 drought events will increase 1.34 times

# Conclusions

### Impact of Climate Change on Hydrology

Under A1B-S(2020~2049) scenario, runoff will increase during the period from Jul to Sep. However, runoff decreases during the remaining months

## Multiple Drought Index

This study would like to propose a multiple index (i.e., M\_DRI) to address the drought characteristics. The analysis results show M\_DRI is an efficient and suitable index for assessing the risk of water supply.

## Risk of Water Supply Under Climate Change

For public water supply, the number of level 2 drought event will increase 1.34 times under A1B-S scenario.



# **Thank You for Your Attention**